Analysis of Changes to Propagation and Refraction Height on Specific Paths Induced by the 14 October 2023 Eclipse

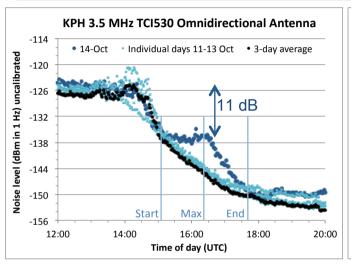
Gwyn Griffiths G3ZIL

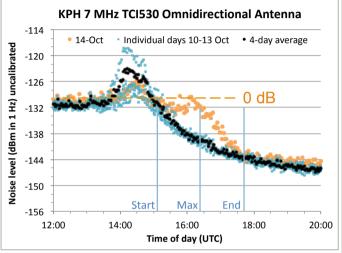
HamSci Community, Southampton, UK Associate Member, Radio Society of Great Britain Propagation Studies Committee

This study could not have been performed without these **tools**: WsprDaemon from Rob Robinett Al6VN, FST4W from the WSJT-X development team, PyLap (a wrapper for PHaRLAP, created by Dr Manuel Cervera, Defence Science and Technology Group, Australia that incorporates the International Reference Ionosphere /dat/iri2016/00_iri2012-License.txt) from HamSci and the University of Scranton, ionosonde data from Pt. Arguello via GIRO released under CC-BY-NC-SA 4.0 license, PSWS Central Control System from HamSci, and the WsprSonde-6 hardware from Paul Elliott WB6CXC. I acknowledge FST4W **data collection** from KPH (Maritime Radio Historical Society), KFS Radio Club, WO7I (Tom Bunch), ND7M (Dennis Benischek), TI4JWC (John Clark), W7WKR (Dick Bingham), KV6X (Dan Beugelmans), and Grape **data collection** from KF7YRS (Lee Phebus).

Motivation and Outline

Test the capabilities of the WsprDaemon software and its user community to extract maximum information from WSJT-X modes WSPR and FST4W. Specifically:


- Simultaneous noise measurement
- Calculation of signal level
- GPS-aided or GPS-disciplined equipment
- Frequency resolution of 0.1 Hz
- Doppler shift measurement
- Frequency spread measurement (FST4W)
- Simultaneous multiple frequencies
- Data publically available, several on-line tools, e.g. wspr.rocks, wspr.live


Our measurements show the eclipse:

- Reduced total absorption
 - Propagated-in noise
 - One-hop path
- Lowered F2 critical frequency
 - Effect on circuit reliability
 - Propagation mode transient changes
- Produced an anomaly in height of refraction
 - One hop path, three frequencies

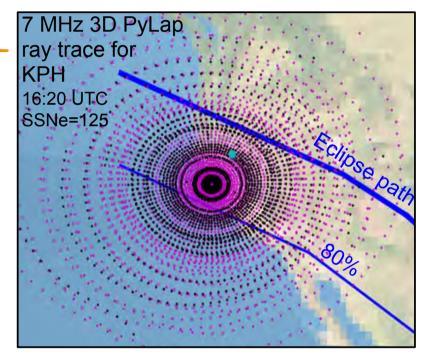
Reduced Total Absorption L_t : Propagated-in Noise Increase

- ☐ WsprDaemon software records noise alongside WSPR and FST4W spots every two minutes.
- ☐ KPH, Point Reyes, California has low local noise from combination of rural site with much attention to minimizing local sources and mechanisms.
- Consequently, noise level is dominated by propagated-in noise.

Normal diurnal variation of noise at 3.5 and 7 MHz at KPH has maximum propagated-in noise at night. Minimum noise around noon local solar time due to absorption.

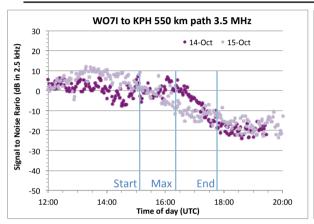
- **3.5 MHz** Peak noise during eclipse was 11 dB *below* its night-time value: -136 dBm in 1 Hz vs. -125 dBm in 1 Hz.
- 7 **MHz** Peak noise during the eclipse was *equal to* its night-time value: -130 dBm in 1 Hz.

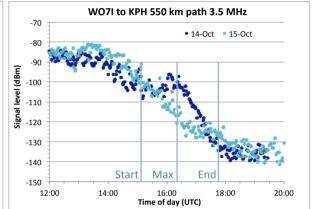
Chasm between Observations, known Unknowns & Physics

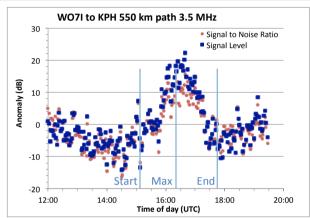

A reasonable fidelity model would include time and space variations of:

- Locations of one-hop propagated-in noise sources
- Noise source transitions of the D region
- ☐ Ratio of the operating frequency to the E-region critical frequency *fo*E

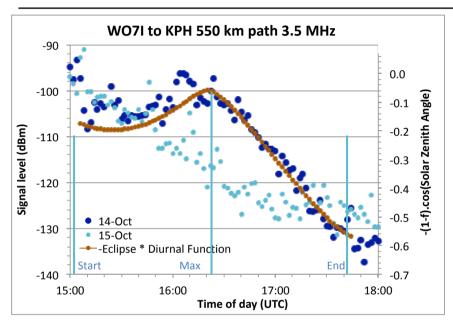
Time, space and height variations of:


- Electron density N
- ☐ Collision frequency *v*
- Ion production and loss

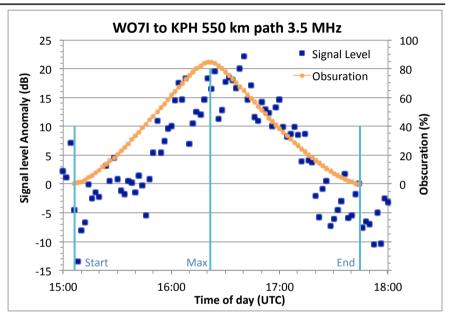

With their own complexity. Then there is the neutral atmosphere...



Reduced Total Absorption L_t : SNR and Signal Level 3.5 MHz



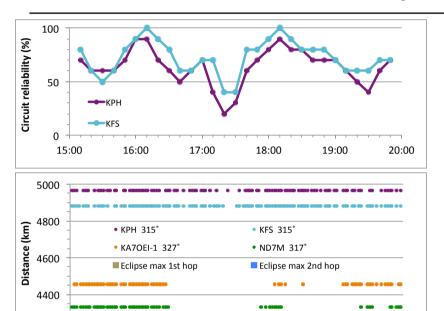
- Predominantly one-hop path: median frequency spread 67 mHz.
- □ SNR, the only measurements from modes WSPR, FT8 etc., can be a compromised proxy for signal level when noise level varies.
- Simultaneous noise measurement enables signal level estimate.
- Median signal level anomaly 16.5 dB, median SNR anomaly 10.4 dB over interval +/- 20 minutes of maximum obscuration.



Signal Level Variation and Obscuration Factor

Eclipse * Diurnal Function = (1-f). cos (χ)

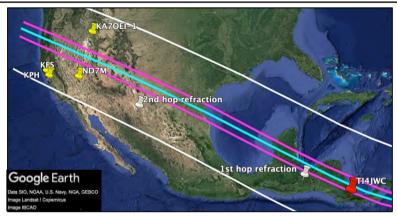
f is fraction of sun's disc obscured, χ is the Solar Zenith Angle. Allows comparison of results including the normal diurnal variation of total absorption with χ .


Only obscuration fraction f needed when comparing signal level anomaly between eclipse and non-eclipse days.

Increased scatter from subtracting values for the two days.

Lowered F2 Critical Frequency: 28 MHz on Two-hop Paths

Two gaps at ~4400 km range – was this when eclipse affected each of the two hops in turn?


Time of day (UTC)

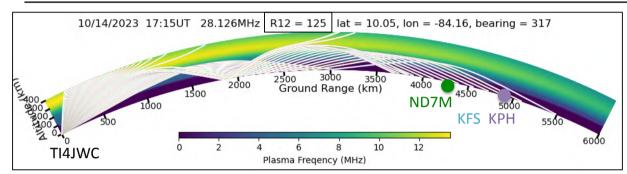
18:00

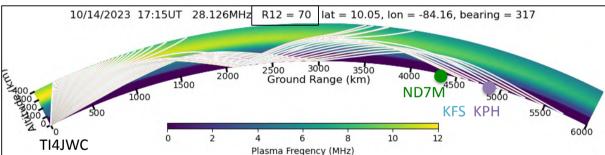
19:00

20:00

17:00

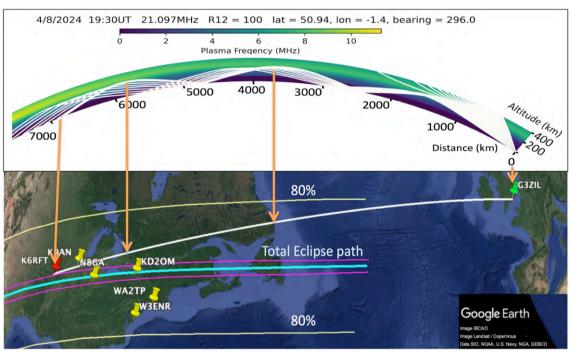
- WSPRSONDE-6 simultaneous transmissions from TI4JWC, Costa Rica, every two minutes on six bands 3.5 MHz to 28 MHz.
- Hypothesis that foF2 was reduced such that it was:
- High enough for 5000 km KPH/KFS range to remain within second propagation zone.
- 2. Low enough for ~4400 km ND7M/KA7OEI-1 range to be within second skip zone.


16:00


4200

15:00

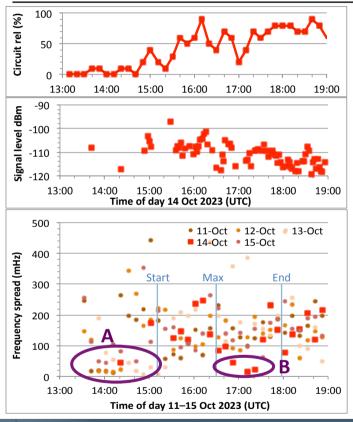
Hypothesis Test with PyLap Ray Tracing: Alter R_{12}



- Using PyLap ray tracing, what drop in R_{12} does it take to push minimum range of second hop to beyond 4300 km while keeping propagation to 5000 km? Answer: 70
- Not a high fidelity test. R12 change affects both ionospheric refractions, more complex travelling changes in an eclipse needs a more capable model.

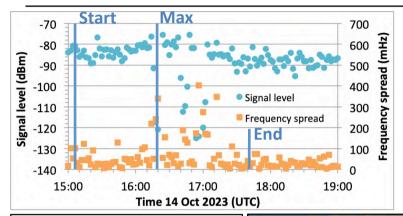
Integrated PyLap and SAMI3?

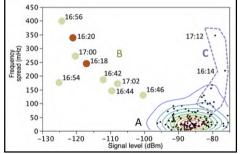
An Equivalent during the April 2024 Eclipse?

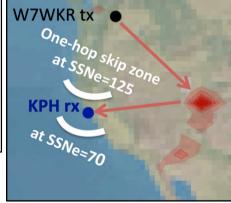


- Eclipse ends at sunset mid-Atlantic. However...
- Ray trace model for 8 April 2024 19:30 UTC shows example three-hop path to K6RFT on 21 MHz.
- Second and third hops within eclipse region, third hop affected first then second.
- Just a model ... here sunspot number is 100 ... but worth trying WSPR/ FST4W on 21, 24, 28 MHz from 17:00 − 21:00 UTC 7−9 April?
- News item in March RSGB *RadCom*

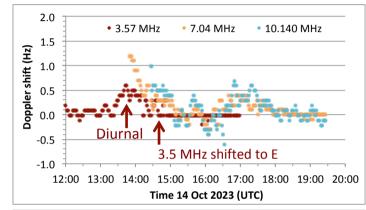
Lowered F2 Critical Frequency: Propagation Modes Change

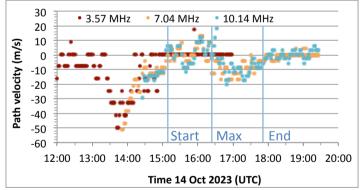

Two hop becomes one-hop


- 1808 km path on 14 MHz from W7WKR, Washington State to KV6X, New Mexico
- □ Daily, as the path opens, one-hop propagation prevails, period 'A'. Identified by <100 mHz frequency spread measured using FST4W.
- Daily, as foF2 increases, path becomes mix of onehop and two-hop with >100 mHz frequency spread and much variation.
- But, for a short time during the eclipse, after maximum obscuration, period 'B', the path reverted to one-hop only marked by its lower frequency spread.



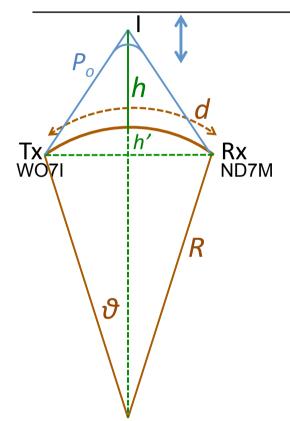
Lowered F2 critical frequency: Propagation Modes Change




One-hop becomes two-hop sidescatter

- □ 1055 km 14 MHz path W7WKR to KPH.
- One-hop propagation prevails on this shorter path throughout normal days.
 Identified by <100 mHz frequency spread, cluster 'A'.
- One-hop propagation either side of eclipse.
- ☐ Spots with high frequency spread and lower SNR, area 'B', suggest propagation changed to two-hop sidescatter.
- ☐ Implication is that Maximum Usable Frequency for this 1055 km path dropped below 14 MHz. But only at, and after, maximum obscuration.

Anomaly in Height of Refraction: Doppler to Path Velocity


- ☐ WsprDaemon reports FST4W mean frequency to 0.1 Hz.
- WSPRSONDE-6 GPS phase locked transmitter at WO7I (89% obscured), to GPS-aided KiwiSDR at ND7M (87% obscured), both in Nevada, one-hop 545 km path.
- **3.5** MHz, open during the night, captured positive Doppler shift from start of refracting layer descent.
- → 7 MHz and 10 MHz open in turn, continue to give data after 3.5 MHz propagation a) shifted from F2 to E layer refraction and b) ceased.
- Doppler shift Δf to rate of change of path length P, i.e. Path Velocity:

$$\frac{\Delta P}{\Delta t} = -\frac{c.\Delta f}{f}$$

where *c* is velocity of light and *f* the operating frequency

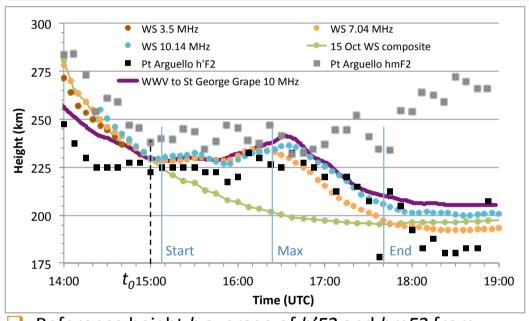
Path Velocity to Refraction Height

1.
$$\theta = d/2R$$

2. Get <u>one</u> value of h from Pt. Arguello ionosonde at t_0 to estimate path length P_0 at t_0 :

$$P_0 = 2.\sqrt{(R.\sin(\theta))^2 + (h + R.(1 - \cos(\theta)))^2}$$

3. Calculate path length P_t at next two-minute interval:

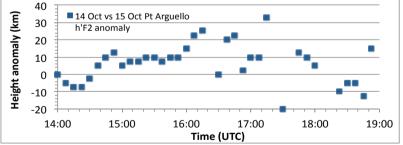

$$P_{t} = P_{0} + \frac{\Delta P}{\Delta t} . \Delta t$$

4. Calculate h_t for the next two-minute interval:

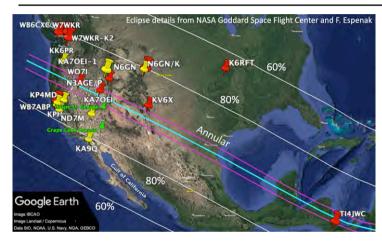
$$h_{t} = \frac{1}{2} \sqrt{P_{t}^{2} - (2.R\sin(\theta))^{2}} - R.(1 - \cos(\theta))$$

Height of Refraction: FST4W and WWV to St. George Grape

- Reference height h average of h'F2 and hmF2 from ionosonde at $t_0 = 15:00$ UTC
- ☐ Height for 15 Oct. non-eclipse day is composite of 3.5 MHz, 7.04 MHz and 10.14 MHz

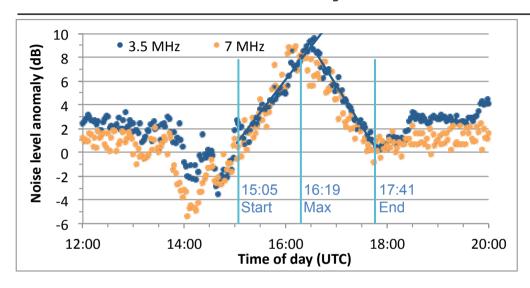

- Doppler shift of St. George Grape (#57) calculated using complex autocorrelation at one lag.
- Sound-card induced offset at St. George Grape nulled by assuming zero Doppler 18:30−19:00 UTC.

Anomaly in Height of Refraction: FST4W, Grape, Ionosonde



- Maximum height anomaly:
 WO7I ND7M 33 km, 10 min after maximum
 WWV St. George 31.5 km, 1 min after maximum
 Both 86% obscured at path mid point.
- Oblique FST4W and Grape Doppler gives smoother and more complete records than ionosonde h'F2 or hmF2 heights. "...hmF2 from these ionosondes is very 'noisy' ... a calculation that critically depends on small details..." Terry Bullett, WOASP, HamSci online forum

Conclusions



Map showing the subset of WsprDaemon receivers and transmitters with at least 60% obscuration for the 14 October 23 eclipse. All extended data in the public domain.

- Extended information in the WsprDaemon database on noise, signal levels, frequency spread and Doppler frequency adds considerably to digital modes metadata.
- Eclipse-induced changes to noise and signal levels were straightforward to observe, but prove challenging for this amateur to model and to partition between many contributing factors.
- Subtle propagation mode changes were observed and documented using frequency spread.
- ☐ While PyLap ray tracing is useful, a dynamic ionosphere model would be needed to simulate these propagation path transient features.

Noise Level Anomaly at 3.5 MHz and 7 MHz

- □ 3.5 MHz and 7 MHz noise 7–9 dB higher than normal at KPH.
- Noise anomaly start and end times tie in well with eclipse start and end times at KPH.
- Noise maximum 10.5 min after obscuration maximum at KPH on
 3.5 MHz and 3.75 min before at 7 MHz
- Anomaly shape suggests convolution of noise source spatial distribution with space-time variation of eclipse obscuration.

